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Abstract. We investigate QCD with a large number of massless flavors with the aid of renormalization
group flow equations. We determine the critical number of flavors separating the phases with and with-
out chiral symmetry breaking in SU(Nc) gauge theory with many fermion flavors. Our analysis includes
all possible fermionic interaction channels in the pointlike four-fermion limit. Constraints from gauge in-
variance are resolved explicitly and regulator-scheme dependencies are studied. Our findings confirm the
existence of an Nf window where the system is asymptotically free in the ultraviolet, but remains mass-
less and chirally invariant on all scales, approaching a conformal fixed point in the infrared. Our prediction
for the critical number of flavors of the zero-temperature chiral phase transition in SU(3) is Ncrf = 10.0±

0.29 (fermion)+1.55−0.63 (gluon), with the errors arising from approximations in the fermionic and gluonic sec-
tors, respectively.

PACS. 11.10.Hi; 11.15.Tk; 11.30.Rd

1 Introduction

In order to investigate the dynamics of strongly interact-
ing gauge systems, it has often been a successful strategy to
deform the desired system into a more accessible one. For
instance, the approximation of a continuum gauge theory
by a finite lattice gauge theory can be viewed as such a de-
formation. In the same spirit, the addition of more symme-
tries as in supersymmetric versions of gauge theories rep-
resents such a more tractable deformation. In the present
work, we consider the deformation of SU(Nc) gauge theo-
ries by many massless fermion flavors. Since light fermions
have the perturbative tendency to screen long-range forces,
a large fermion flavor number Nf has the potential to move
the system towards a weaker gauge interaction, for which
analytic tools are more powerful.
The relevance of fermionic screening at large Nf is ul-

timately observable for Nf >N
a.f.
f := 11

2 Nc where asymp-
totic freedom is lost. But even for smaller Nf, fermionic
screening is first signaled by the second β function coef-
ficient of the gauge coupling, reversing its sign for Nf >
34N3c
13N2c−3

. This sign change induces a second zero of the per-

turbative β function, implying an infrared (IR) attractive
fixed point of the gauge coupling α∗ > 0. As was first ar-
gued in [1], the fixed-point value α∗ is small for Nf �Na.f.f ,
supporting the possibility of a perturbative analysis. If this
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fixed point persists on all scales, the system approaches
a conformally invariant limit in the deep IR, keeping mass-
less quark and gluon excitations in the spectrum. This sce-
nario can collapse owing to non-perturbative phenomena
such as the spontaneous break-down of chiral symmetry.
The latter renders the fermions massive, implying their de-
coupling at low scales. Fermionic screening properties are
thus switched off in the deep IR, and the system is charac-
terized by strongly coupled glue and the Goldstone bosons
of chiral symmetry breaking (χSB).
Since χSB is triggered by the strength of the gauge

interactions which in turn depends on the amount of
fermionic screening, we expect the conformal scenario to
hold for large Nf sufficiently close to N

a.f.
f . The broken

phase is supposed to occur for smaller Nf with a critical
N crf separating the two phases. In fact, evidence for this
phase structure has been collected from various methods,
including (improved) ladder truncated Dyson–Schwinger
equations [2–4], lattice QCD [5], anomaly-induced effect-
ive potentials [6], and instanton models [7], with estimates
for the critical number of flavors ranging from N crf � 5 [8]
to N crf � 12 for SU(3) gauge theory.
An analysis of the quark-scattering amplitude using the

functional methods [2, 3] particularly reveals that the na-
ture of the phase transition, though continuous, is not con-
ventionally second order.1 This is most prominently visible

1 Owing to the different conformal properties of the system
on each side, the transition is often referred to as a conformal
phase transition [2].
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in the fact that there appear to be no light scalar states
in terms of which an effective theory could be constructed
on the symmetric side (Nf � N crf ) of the phase transi-
tion [2, 3, 9]. Any attempt at constructing a Ginzburg–
Landau type of effective potential for the chiral order pa-
rameter hence produces discontinuities in the potential pa-
rameters. On the other hand, the order parameter in the
form of the chiral condensate, i.e., the minimum of this
would-be potential, changes continuously across the phase
transition.
In this work, we analyze the phase structure of many-

flavor QCD with the aid of the functional renormaliza-
tion group (RG). Beyond its conceptual simplicity, the
approach operates in continuous spacetime, supports an
explicit implementation of chiral symmetry, and includes
a resummation of beyond-ladder diagrams already in sim-
ple truncations. Moreover, we monitor gauge invariance
with the aid of Ward–Takahashi identities and study
regulator-scheme dependencies. Since the critical number
of flavors is a universal quantity, the scheme dependencies
are a direct measure of the approximation uncertainties of
our non-perturbative truncation. Apart from a quantita-
tive prediction for N crf , our results reveal further facets of
the nature of the phase transition. Across the phase transi-
tion, we particularly observe discontinuities in the effective
fermionic self-interactions which are generated by the RG
flow.
For our analysis, we employ the functional RG formu-

lated in terms of a flow equation for the effective average
action Γk [10],

∂tΓk =
1

2
STr ∂tRk (Γ

(2)
k +Rk)

−1, t= ln
k

ΛUV
, (1)

serving as an alternative definition of the quantum field
theory. Γk is a free-energy functional that interpolates be-
tween the bare action Γk=ΛUV = S and the full quantum
effective action Γ = Γk=0. Here, Rk denotes a regulator
function that specifies the details of the momentum-shell
integrations, the variation of which will provide us with an
error estimate of our approximations. We devote Sect. 2
to a discussion of our approximation scheme, which repre-
sents a truncation of the full theory to the relevant opera-
tors for the present problem. Results and conclusions are
presented in Sects. 3 and 4.

2 Flow equations

Our primary aim is a reliable determination of the criti-
cal flavor number N crf . For this, the approach of the phase
transition from the symmetric side is technically advanta-
geous, since the relevant degrees of freedom are expected to
remain the same during the flow from the ultraviolet (UV)
to the infrared (IR): quarks and gluons. Therefore, we solve
the flow equation (1) in a truncated subspace of all possible
action functionals.
In addition to standard gauge and fermion sectors, we

include all possible pointlike four-fermion interactions that

are compatible with SU(Nc) gauge symmetry and a chi-
ral SU(Nf)L×SU(Nf)R flavor symmetry for Nf fermion
species2,

Γk =

∫
ψ̄(iZψ � ∂+Z1g �A)ψ+

ZA

4
Fµνz F

z
µν +

(∂µA
µ)2

2α

+
1

2

[
Z−λ̄− (V–A)+Z+λ̄+ (V+A)+Zσλ̄σ (S–P)

+ZVAλ̄VA
[
2 (V–A)adj+(1/Nc) (V–A)

] ]
d4x .

(2)

Here Aµ = A
zT z, Fµν = F

z
µνT

z denote the nonabelian
gauge potential and field strength (the inclusion of a ghost
sector is tacitly assumed). The gauge-field kinetic term is
accompanied by a k-dependent wavefunction renormaliza-
tion ZA, the fermionic one by Zψ. Similarly, Z1, Z+, Z−,
Zσ and ZVA are the vertex renormalizations, whereas ḡ,
λ denote the bare couplings. Renormalized dimensionless
couplings are defined by

g =
gZ1

Z
1/2
A Zψ

, λi =
Zik

2λi

Z2ψ
. (3)

We work in the Landau gauge, α= 0, which is known to be
a fixed point of the renormalization group [12] and has the
additional advantage that the fermionic wavefunction is
not renormalized in our truncation, so that we can choose
Zψ = 1.
The four-fermion interactions can be classified accord-

ing to their color and flavor structure. Color and flavor
singlets are

(V–A) = (ψ̄γµψ)
2+(ψ̄γµγ5ψ)

2, (4)

(V+A) = (ψ̄γµψ)
2− (ψ̄γµγ5ψ)

2, (5)

where color (i, j, . . . ) and flavor (a, b, . . . ) indices are con-
tracted pairwise, e.g., (ψ̄ψ)≡ (ψ̄ai ψ

a
i ). The remaining oper-

ators have non-trivial color or flavor structure,

(S–P) = (ψ̄aψb)2− (ψ̄aγ5ψ
b)2 (6)

≡ (ψ̄ai ψ
b
i )
2− (ψ̄ai γ5ψ

b
i )
2,

(V–A)adj = (ψ̄γµT
zψ)2+(ψ̄γµγ5T

zψ)2, (7)

where (ψ̄aψb)2 ≡ ψ̄aψbψ̄bψa, etc., and (T z)ij denotes the
generators of the gauge group in the fundamental repre-
sentation. The set of fermionic self-interactions occurring
in (2) forms a complete basis. Any other pointlike four-
fermion interaction invariant under SU(Nc) gauge symme-
try and SU(Nf)L×SU(Nf)R flavor symmetry is reducible
by means of Fierz transformations.
It is important to stress that the effective action (2)

is in the QCD universality class [13], as long as the four-
fermion interactions are small in the UV and thus RG irrel-
evant. Only non-perturbatively large (Ziλi)’s would bring

2 We note that only the four-fermion interactions are mani-
festly invariant under local gauge transformations for all pos-
sible choices of the couplings. Gauge invariance of the remain-
ing terms is governed by (modified) Ward–Takahashi identities
as discussed for the present system in [11].
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us into another universality class with χSB of Nambu–
Jona–Lasinio (NJL) type, which will not be considered in
this work.
Plugging the truncated effective action (2) into the flow

equation, we obtain the following β functions for the di-
mensionless couplings λi [11]:

∂tλ− = 2λ−−4v4l
(FB),4
1,1

[
3

Nc
g2λ−−3g

2λVA

]
(8)

−
1

8
v4l
(FB),4
1,2

[
12+9N2c
N2c

g4
]

−8v4l
(F),4
1

{
−NfNc(λ

2
−+λ

2
+)+λ

2
−

−2(Nc+Nf)λ−λVA+Nfλ+λσ+2λ
2
VA

}
,

∂tλ+ = 2λ+−4v4l
(FB),4
1,1

[
−
3

Nc
g2λ+

]
(9)

−
1

8
v4l
(FB),4
1,2

[
−
12+3N2c
N2c

g4
]

−8v4l
(F),4
1

{
−3λ2+−2NcNfλ−λ+

−2λ+(λ−+(Nc+Nf)λVA)+Nfλ−λσ

+λVAλσ+ 1
4λσ

2
}
,

∂tλσ = 2λσ−4v4l
(FB),4
1,1

[
6C2(Nc) g

2λσ−6g
2λ+
]

(10)

−
1

4
v4l
(FB),4
1,2

[
−
24−9N2c
Nc

g4
]

−8v4l
(F),4
1

{
2Ncλ

2
σ−2λ−λσ

−2NfλσλVA−6λ+λσ
}
,

∂tλVA = 2λVA−4v4l
(FB),4
1,1

[
3

Nc
g2λVA−3g

2λ−

]
(11)

−
1

8
v4l
(FB),4
1,2

[
−
24−3N2c
Nc

g4
]

−8v4l
(F),4
1

{
− (Nc+Nf)λ

2
VA+4λ−λVA− 1

4Nfλ
2
σ

}
.

Here C2(Nc) = (N
2
c −1)/(2Nc) is a Casimir operator of the

gauge group, and v4 = 1/(32π
2). For better readability, we

have written all gauge-coupling-dependent terms in square
brackets, whereas fermionic self-interactions are grouped
inside braces. The threshold functions l characterize the
regulator dependence [14]. For the “optimized” linear reg-
ulator [15], these read

l
(F),4
1 =

1

2
, l

(FB),4
1,1 = 1−

ηA

6
, l

(FB),4
1,2 =

3

2
−
ηA

6
. (12)

Next, let us turn to the running of the gauge coupling.
Even though a non-perturbative estimate can already be
obtained within the current simple truncation [16], a re-
liable estimate to higher loops requires the inclusion of
many further vertex operators in the truncation (2). In-
stead, we construct the β function according to the fol-
lowing line of argument: First, we note that gauge invari-
ance in the RG scheme can be monitored with the aid
of regulator-dependentWard–Takahashi identities [16, 17].

For the present system, these identities constrain the four-
fermion contributions to the running gauge coupling to be
of the form [11]

∂tg
2 = η̆g2 g

2−4v4l
(F),4
1

g2

1−2v4l
(F),4
1

∑
ciλi
∂t
∑
ciλi,

cσ = 1+Nf, c+ = 0, c− =−2, cVA =−2Nf, (13)

where

η̆g2 = ηA−2η̆1+2ηψ (14)

=−4v4g
2
(
β0+β1(2v4g

2)+β2(2v4g
2)2+ . . .

)
is the standard gauge-coupling anomalous dimension, triv-
ially related to the standard β function by β̆2g = η̆g2g

2. ηA,
ηψ and η1 are the gluon, quark and quark–gluon-vertex
anomalous dimensions, respectively, defined by ηi = −∂t
lnZi; ηψ, in fact, vanishes in the present truncation using
the Landau gauge. The ˘ symbol denotes those standard
contributions which are not generated by the modified
Ward–Takahashi identities; for instance, the difference be-
tween η1 and η̆1 is exactly given by the term∼ ∂tλi in (13).
Instead of computing η̆g2 in the RG scheme, we use the

four-loop result obtained in the MS scheme [18, 19] as an
estimate. For a qualitative discussion, let us list the first
two coefficients (all four known coefficients are used in the
numerics),

β0 =
11

3
Nc−

2

3
Nf, β1 =

34N3c +3Nf−13N
2
cNf

3Nc
, (15)

with β1 reversing its sign for Nf >
34N3c
13N2c−3

. Since we do

not expect that the RG- and MS-scheme β functions ex-
actly coincide, this four-loop approximation introduces an
error that is estimated below.3 It should be stressed at this
point that some crucial properties of the β function are not
scheme dependent; in particular, the existence of zeros, i.e.,
fixed points, is a universal result which is relevant for the
present problem.
One further technical point needs to be mentioned:

whereas the runninggauge coupling isdominatedby η̆g2, the
threshold functions l of the fermionic sector require the sep-
arateknowledgeofηA.As a roughbut sufficient estimate,we
simply employ the one-loop relation for the Landau gauge,

η1- loopA = 13
22 η̆

1-loop

g2
. Since the anomalous dimensions turn

out to remain numerically small ofO(0.1) and the threshold
functions only depend on ηA6 , this additional higher-order
approximationhas little effect on the result.4

3 Note that the additional terms ∼ ∂tλi in (13) already con-
tribute to the resulting β function at two-loop order. By ap-
proximating η̆g2 by the MS result, we introduce a potential
double counting of diagrams at this and higher order. However,
the ∂tλi contributions vanish at the fixed point. In addition, we
would like to stress that we are using a mass-dependent regular-
ization scheme, and universality of the second coefficient in the
β function does not hold and further contributions at this order
are expected.
4 As a check, we have used the pure one-loop result η1-loopA ,
which is non-vanishing at the fixed point. The corresponding re-
sults lie well within the estimated error (shaded region in Fig. 3).
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3 Results

The onset of χSB is detected by the four-fermion part of
our model (2). Chiral symmetry remains preserved in the
pointlike limit, as long as the fermion self-interactions re-
main finite. In turn, χSB is signaled by a diverging λi. This
seeming Landau-pole behavior points to the formation of
chiral condensates, since the λi’s are inversely proportional
to the mass parameter of a Ginzburg–Landau potential for
the order parameter in a (partially) bosonized language,
λi ∼ 1/m2i .
Therefore, let us first consider the λi flow separately. For

vanishing gauge coupling, the flow is solved by vanishing
λi’s, which is theGaussianfixed point. This fixed point is IR
attractive, implying that these self-interactions are RG ir-
relevant for sufficiently small bare couplings, as they should
be. Since the λi flows are quadratic in the λi’s correspond-
ing to a parabola, there are 15 further non-Gaußian fixed
points (2(#λi=4) = 16 in total). These are related to the set
of critical couplings λi,cr beyond which the system is in the
universality class of NJL type; see Fig. 1.
For fixed small gauge coupling, the Gaußian fixed point

is shifted a bit to fixed-point values of the order λ∗,i ∼ g4,
effectively describing scattering of massless quarks. This
fixed point is still IR attractive, see Fig. 1; hence there is no
χSB as long as the gauge coupling remains small enough.
If the gauge coupling becomes larger than a critical

value αcr = g
2
cr/4π, all fixed points of the λi flows are re-

moved, so that the λi’s quickly run into a divergence, sig-
naling χSB [20].
In Fig. 2, we study the four-fermion system at fixed

gauge coupling. For various numbers of colors Nc, we
plot the critical gauge coupling αcr = g

2
cr/4π at which the

fermion system becomes critical and exhibits χSB. For
an increasing number of colors, αcr decreases. The depen-
dence on the number of flavors is rather weak.
Now, let us switch on the running of the gauge coup-

ling. The above-mentioned fixed points in the fermionic
system become quasi-fixed points which persist for suffi-
ciently weak gauge coupling; their values are modulated by

Fig. 1. Sketch of a typical β function for the fermionic self-
interactions λi: at zero gauge coupling, α= 0 (solid curve), the
Gaußian fixed point λi = 0 is IR attractive (the second fixed
point at λi > 0 corresponds to the IR repulsive critical coupling
of NJL type). For small α� 0 (dashed curve), the fixed-point
positions are shifted on the order of α2. For gauge couplings
larger than the critical coupling α > αcr (dot-dashed curve), no
fixed points remain and the self-interactions quickly grow large,
signaling χSB. We emphasize that both fixed-points values re-
main finite until the fixed points eventually vanish at αcr

Fig. 2. Critical coupling for the four-fermion system. From
top to bottom, the number of colors increases from Nc = 2 to
Nc = 8 (The thick line corresponds to Nc = 3). The red/dark-
grey (green/light-grey) line shows the fixed-point gauge coup-
ling for Nc = 3 at four (two) loop. At the crossing, the critical
number of flavors can be read off

the logarithmic increase of the gauge coupling. If the gauge
coupling grows larger than the critical value, the fermionic
quasi-fixed points vanish (the parabola drops below the λi
axis in Fig. 1), and the system runs into the χSB regime.
In this way, the IR physics is solely determined by the
gauge coupling, as expected. Whether or not the system
ends up in the χSB regime finally depends on the maximal
value of the gauge coupling. For a large number of flavors,
Nf �Na.f.f , this value is given by the IR fixed-point value
α∗, induced by the higher β function coefficients. Lowering
Nf increases α∗, eventually exceeding αcr required for χSB.
We determine the resulting critical number of flavors

N crf by comparing the fixed point of the gauge coupling,
α∗ ≡ α∗(Nf), to αcr. The task of solving the complete
coupled set of fixed-point equations ∂tg

2 = 0, ∂tλ= 0 be-
comes simplified by the following observation: (13) reveals
that the only contributions to ∂tg

2 involving λ are propor-
tional ∂tλ. By definition this term vanishes at any fixed
point in the subsystem of four-fermion interactions. There-
fore, the gauge coupling at any fixed point of the complete
system is determined by η̆g2 = 0, which depends only on g.
In Fig. 2, the fixed-point gauge coupling α∗(Nf) is plotted
for Nc = 3 with a two- (green/light-grey) and a four-loop
(red/dark-grey) result for η̆g2 .
The critical number of flavors N crf can now be read

off from the intersection between this line and the criti-
cal coupling αcr of the four-fermion subsystem for Nc = 3
(thick solid line). In the same way, we determine the critical
number of flavors as a function ofNc, as plotted in Fig. 3.

5

The regulator dependence of the flow equation offers
a possibility for estimating the error of our quantitative
results which is introduced by the truncation. Exact re-
sults for physical quantities like N crf are universal with-
out any regulator dependence. However, this universality

5 An equivalent way to determine Ncrf (Nc) is to directly solve
the flow equations (8)–(13) with λi(t= 0) = 0 and a small value
g2(t= 0) as initial conditions. One can then findNcrf by looking
for the infimum of all Nf for which the four-fermion couplings
do not diverge at a finite t, (or alternatively, for the supremum
of those which do diverge).
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Fig. 3. Critical number of flavors for SU(Nc) gauge theory.
The result based on the four-loop MS beta function is denoted
by black circles which lie almost on top of stars, represent-
ing the three-loop result; black boxes correspond to the two-
loop beta function. The (inner) green/dark-grey shaded region
around the four-loop result displays our error estimate for the
fermionic sector. The (outer) turquois/light-grey shaded region
shows the approximate gluonic error, estimated by a varia-
tion of the higher-loop coefficients. The red/grey line shows the
number of flavors above which asymptotic freedom is lost

does not hold for the truncated flow, so that the regula-
tor dependence of would-be universal quantities directly
translates into an error of the truncation. Let us start with
the fermionic subsystem, for which the pointlike approxi-
mation of vertices and the use of “classical” propagators
represents the most severe approximation. If these trun-
cated non-trivial momentum dependencies of vertices and
propagators were important for the determination of the
universal Nf , we would expect a strong regulator depen-
dence within the pointlike approximation. This is because
the flow equation is localized in momentum space and dif-
ferent regulators probe the vertices and propagators at dif-
ferent momentum shells; consequently, erroneously trun-
cated momentum dependencies of the vertices generically
imply strong variations of would-be universal quantities
for different regulators. In this sense, the study of regu-
lator dependencies is an important if not crucial test of
our pointlike approximation in the fermion sector for the
determination of Nf . In the present case, the regulator
dependence occurs in the threshold functions l. Our point-
like truncation is reminiscent of a derivative expansion, for
which a flow-optimization procedure has led to the con-
struction of a linear regulator [15] used in (12). Following
the stability arguments of [15], we consider the results from
this regulator as our “optimized” predictions. The opposite
limit of non-optimized regulators for pointlike interactions
is marked by the sharp cutoff [21] with l

(F),4
1 = l

(FB),4
1,1 =

l
(FB),4
1,2 = 1, neglecting the anomalous dimension. There-
fore, a conservative error estimate is given by the difference
between the sharp cutoff and the optimized regulator.6

This results in the green/dark-grey shaded region in Fig. 3.
The resulting error is actually very small; in particular, we

6 The sharp cutoff can be considered as the limit of a sequence
of powerlike regulators, the results of which all lie within the
estimated error.

observe strong non-trivial cancellations between the con-
tributions of different threshold functions to the final re-
sult. Since this exactly matches with the expectation for
universal quantities, it provides evidence for the reliabil-
ity of the pointlike truncation for the present purpose.
As a further evidence for the consistency of the pointlike
approximation in the symmetric phase, we note that the
gluon as well as the quark anomalous dimension vanish
at the IR fixed point in our approximation, implying that
the use of “classical” propagators is self-consistent here. Of
course, we should stress that the pointlike approximation is
expected to break down for many other questions, in par-
ticular, those related to the properties of the χSBphase.
The largest uncertainty arises from the gauge sector.

As an error estimate, one might use the difference between
the various loop orders in the β-function contribution η̆g2 .
As depicted in Fig. 3, the difference between two and three
loops in the MS scheme is of the order ∆N crf ∼ 1. The dif-
ference between the three- and the four-loop result is al-
ready much smaller. This suggests that, for our purposes,
the gauge sector is reliably approximated by the four-loopβ
function. However, as discussed above, the (known) MS re-
sult is not expected to coincide exactly with the (unknown)
result to be obtained with the linear regulator used so far.
For a quantitative estimate of the resulting error, we can
perform a comparison at two-loop level, where the mass-
dependent character of the flow equation regularization al-
ready introduces scheme dependencies. On a quantitative
level, this introduces differences on the 10% level [22].7 For
the three- and four-loop coefficientswe assume larger uncer-
tainties on the 30% and 50% level, respectively. This results
in an error depicted by the turquois/light-grey shaded re-
gion in Fig. 3. Quadratically adding both uncertainties, the
resulting error is dominated by the gluonic sector.
It has been argued [24] that a regularization scheme ex-

ists in which the two-loop β function for the gauge coupling
is exact. We stress that this does not imply that the two-
loop curve in Fig. 3 is exact, since this particular unknown
regularization scheme may involve a regulator with strong
quantitative influence on the fermionic sector (possibly re-
quiring operators beyond the pointlike limit). Hence, it
is well possible that the resulting curve of that special
scheme is again close to the estimated four-loop result in
our scheme.
It is worth pointing out that the total estimated error is

significantly smaller than the distance to the lineNa.f.f (Nc)
where asymptotic freedom is lost. This strongly confirms
the existence of a phase of many-flavor QCD which is
asymptotically free, but has no χSBand no strict confine-
ment in the IR.

4 Summary and conclusions

We have used flow equations to determine the critical num-
ber of flavors N crf separating the phases with and without

7 For an exact computation of the universal two-loop coeffi-
cient within the functional RG approach, see [23].
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χSB. Our truncation includes all pointlike four-fermion in-
teractions allowed by gauge and chiral symmetry which
are generated by ladder as well as non-ladder processes;
thereby, our result represents a significant improvement
over conventional approximation techniques. Gauge sym-
metry is monitored by modified Ward–Takahashi identi-
ties, resulting in an additional four-fermion contribution to
the flow of the gauge coupling. We have demonstrated that
these terms have no effect onN crf , owing to the structure of
the modified Ward–Takahashi identity (by contrast, these
terms are of quantitative importance, for instance, for the
Landau-pole problem of QED [25]).
Our findings confirm the existence of a sizable parame-

ter regionN crf <Nf <N
a.f.
f where chiral symmetry remains

unbroken, in agreement with earlier results [2–6]. Our re-
sult for the critical number of flavors, for instance, in SU(3)
gauge theory, is N crf = 10.0±0.29 (fermion)

+1.55
−0.63 (gluon).

The errors result from the fermionic and gluonic sectors of
our truncation, respectively, the quantitative influence of
which we have estimated from the regulator dependence of
universal quantities.
Our restriction to a truncation in terms of quark and

gluon fields with pointlike interaction does not facilitate
a study of the χSB regime; for this, the inclusion of bosonic
composite fields along the lines of [13, 20, 26, 27] represents
a powerful tool.
Nevertheless, important aspects of the unusual nature

of the phase transition can already be read off from the
fermionic sector: as long as the system is in the symmet-
ric phase, N crf <Nf <N

a.f.
f , the fermionic self-interactions

approach fixed-point values in the IR which are finite
numbers. Even arbitrarily close to the phase transition,
these numbers remain finite and are elements of a com-
pact region in parameter space, λi|k→0 ∈Ωλ. By contrast,
the self-interactions diverge in the broken phase where
all fixed points have vanished. As a consequence, an infi-
nite region in parameter space outside Ωλ remains inac-
cessible. Varying Nf continuously across the phase transi-
tion coming from the symmetric side, the fermionic self-
interactions jump discontinuously at Nf =N

cr
f . Now, the

λi’s are inversely proportional to the mass parameter of
a Ginzburg–Landau potential for the order parameter in
a (partially) bosonized language, λi ∼ 1/m2i ; hence, our
observation in the fermionic sector agrees with the observa-
tions of [2, 3, 9] that the phase transition is not convention-
ally second order, even though the chiral order parameter
is known to change continuously across the chiral phase
transition [13]. Our work thus reveals further aspects of
the nature of this type of zero-temperature phase transi-
tions which may find further application in related sys-
tems such as QED3 or models of electroweak symmetry
breaking.
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